TRAL
B'Ts

cURL HTTP/3 Components

Security Assessment

February 22, 2024

Prepared for:
Daniel Stenberg, cURL
Organized by Open Source Technology Improvement Fund, Inc.

Prepared by: Vasco Franco, Emilio L6pez, and Spencer Michaels



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 CURL Security Assessment
PUBLIC


https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023-2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to the cURL
project under the terms of the project statement of work and has been made public at the
cURL project's request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 CURL Security Assessment
PUBLIC


https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits
Notices and Remarks
Table of Contents
Project Summary
Executive Summary
Project Goals
Project Targets
Project Coverage
Fuzzing Coverage Assessment
Assessment Overview
HTTP/1 and HTTP/2
HTTP3
BUFQ Implementation
Strategic Fuzzing Recommendations
Codebase Maturity Evaluation
Summary of Findings
Detailed Findings
1. OSS-Fuzz coverage silently dropped significantly
2. curl_fuzzer is ineffective
A. Vulnerability Categories
B. Code Maturity Categories
C. Dolev-Yao TLS Fuzzing Using tispuffin

Trail of Bits 3
PUBLIC

O 00 N U1 A W N =

N N NN /, @ omom 2
uu W = O 0 vV 0o 600 b W -~ -~ O O

CURL Security Assessment



Project Summary

Contact Information
The following project manager was associated with this project:

Jeff Braswell, Project Manager
jeff.braswell@trailofbits.com

The following engineering director was associated with this project:

Anders Helsing, Engineering Director, Application Security
anders.helsing@trailofbits.com

The following consultants were associated with this project:

Vasco Franco, Consultant Emilio Lépez, Consultant
vasco.franco@trailofbits.com emilio.lopez@trailofbits.com

Spencer Michaels, Consultant
spencer.michaels@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date Event

December 8, 2023 Pre-project kickoff call

December 21, 2023 Status update meeting #1

January 4, 2024 Delivery of report draft; report readout meeting

February 22, 2024 Delivery of comprehensive report

Trail of Bits 4 CURL Security Assessment

PUBLIC


mailto:jeff.braswell@trailofbits.com
mailto:anders.helsing@trailofbits.com
mailto:vasco.franco@trailofbits.com
mailto:emilio.lopez@trailofbits.com
mailto:spencer.michaels@trailofbits.com

Executive Summary

Engagement Overview

The Open Source Technology Improvement Fund engaged Trail of Bits to review the
security of cURL's newly added HTTP/3 components.

A team of three consultants conducted the review from December 8 to 26, 2023, for a total
of six engineer-weeks of effort. Our testing efforts focused on components recently added
to cURL to support HTTP/3, as well as cURL's fuzz tests implemented for said components.
With full access to source code and documentation, we performed static and dynamic
testing of the codebase, using automated and manual processes. In addition, we both
modified existing fuzz tests and wrote additional tests to increase fuzzing coverage. The
scope of this audit included only code directly related to HTTP/3 functionality within cURL
itself—notably, excluding the internals of third-party libraries such as ngtcp2 and nghttp3
that cURL calls out to for lower-level HTTP/3 operations.

Observations and Impact

cURL's HTTP/3 components are implemented fairly robustly, making heavy use of
preexisting primitives common to much of the rest of the cURL codebase (e.g., bufq and
dynbuf). In effect, the components within the scope of this audit largely comprise an
intermediate layer that lightly handles incoming data in order to pass it on to third-party
libraries for lower-level processing, maintaining some associated state meanwhile. We did
not identify any memory safety, data handling, or state maintenance issues in cURL's
HTTP3 components; however, we did identify regressions and gaps in cURL's fuzz tests that
have caused recent versions of cURL to suffer considerably in terms of fuzzing coverage.

It should be noted that the scope of the code reviewed within this audit is relatively narrow.
In particular, while we audited cURL's use of the third-party libraries ngtcp2, nghttp3,
quiche, and msh3 to implement HTTP/3 functionality, we did not investigate the internals
of those libraries—which is where the majority of the low-level parsing and data
transformation necessitated by the HTTP/3 protocol occurs. The fuzz tests we implemented
did involve those library internals, insofar as they invoked code paths that called them
internally, but they were not targeted directly. We recommend conducting additional audits
targeted at the internals of those libraries, especially ngtcp2 and nghttp3, which are
currently the cURL developers’ main focus for HTTP/3 support.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the cURL development team take the following steps
going forward:

Trail of Bits 5 CURL Security Assessment
PUBLIC



e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

e Implement measures to detect regressions in fuzzing coverage. Significant
reductions in coverage should be promptly identified and addressed. This is
particularly relevant when we consider that OSS-Fuzz is fuzzing cURL continuously;
any changes that make harnesses ineffective will negate the benefit of continuous
fuzzing.

e Conduct additional security audits of the ngtcp2, nghttp3, quiche, and msh3
HTTP/3 libraries employed by cURL, and implement fuzz tests that cover them.
Much of the lower-level data processing involved in parsing the HTTP/3 protocol
occurs in these libraries, rather than in cURL's codebase directly.

e Consider alternatives to decouple or stub out encryption from the QUIC
implementation. A very limited amount of code paths can be explored currently in
the HTTP/3 implementation, as a traditional fuzzer is not able to produce valid
encrypted traffic. Including a way to be able to fuzz HTTP/3 and HTTPS in plaintext
would enhance the fuzzability of the protocols. This will require coordinated work
with the third-party libraries implementing HTTP/3.

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 0 Configuration 2
Medium 0
Low 0
Informational 2
Undetermined 0

Trail of Bits 6 CURL Security Assessment

PUBLIC



Project Goals

The engagement was scoped to provide a security assessment of cURL's new HTTP/3
components. Specifically, we sought to answer the following non-exhaustive list of
questions:

e Are there any logic errors within the HTTP/3 components that could result in
reaching an inconsistent state, given ill-formatted inputs?

e Are there any aspects of the HTTP/3 specification with which cURL's implementation
does not comply, especially areas where the HTTP/2 and HTTP/3 specifications differ
substantially?

e Are there any circumstances in which cURL could mismanage its underlying UDP
components?

e Does cURL use its underlying HTTP/3 libraries (e.g., ngtcp2) in unsafe ways?
e Does cURL have sufficient fuzz test coverage on its core components?

e What code paths within the HTTP/3 components are most likely to benefit from
additional fuzz tests?

Trail of Bits 7 CURL Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the targets listed below.

cURL

Repository https://github.com/curl/curl

Version ede2e812c22fd42527acffdbafd98ee90eaabddbe
Type Library and CLI binary

Platform Native

cURL fuzzer for 0SS-Fuzz

Repository https://github.com/curl/curl-fuzzer

Version f67fa1000e8dbc2f9f0189f8669bec9816d5a2f3

Type Fuzzing harnesses and scripts

Platform x86 and x86_64

Trail of Bits 8 CURL Security Assessment

PUBLIC


https://github.com/curl/curl-fuzzer

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

e Manual code review and static analysis of cURL's HTTP/3-related components, with a
particular focus on code paths involving the ngtcp2 back end.

e Analysis of existing fuzz test coverage for HTTP/3-related functionality, and
implementation of additional fuzz tests.

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e Given our engineers' relative unfamiliarity with the details of the HTTP/3
specification, compared to the cURL developers themselves, our ability to identify
protocol-level issues such as spec noncompliance was limited.

Trail of Bits 9 CURL Security Assessment
PUBLIC



Fuzzing Coverage Assessment

As part of this engagement, Trail of Bits reviewed the cURL project’s fuzz tests and their
coverage, with the aim of improving their depth and coverage of the HTTP3
implementation. The libcurl library is continuously fuzzed by OSS-Fuzz, an initiative for
fuzzing open-source software, using scripts and harnesses from the curl-fuzzer
repository.

Assessment Overview

As a first step, we reviewed the coverage currently achieved by the fuzzing harnesses in the
repository, based on the seed cases. We also reviewed coverage reports from OSS-Fuzz.
These reports showed a significant decrease in coverage compared to last year (see finding
TOB-CURLH3-1 for further context). We also observed nil coverage of the code
implementing HTTP/3. This was expected, as OSS-Fuzz does not currently build cURL with
HTTP/3 support.

During the first week of the engagement, we investigated the root cause of the drop in
coverage and provided a pull request on the curl-fuzzer repository to resolve the issue.
Once it was merged and a few days passed, we saw the coverage rise in general to levels
similar to those observed in November 2022. Once we had a good baseline to reference,
we reviewed the coverage in more detail.

To start covering HTTP/3 code paths, we then made changes to the curl-fuzzer
repository to build cURL with HTTP/3 support. This necessitated adaptations in the build
scripts to build and install a compatible TLS library as well as one or more libraries
implementing the QUIC and HTTP/3 protocols. After discussions with the cURL
development team, we selected QuicTLS, ngtcp2, and nghttp3 as the most suitable build
combination. We wrote scripts to download and build these libraries as part of the
curl-fuzzer repository, and to enable HTTP3 support in cURL. Following that work, we
also needed to improve the curl_fuzzer harness, so that it performed adequately with a
datagram-based protocol like HTTP/3.

We also identified a common code path from cURL, BUFQ, which had some indirect
coverage but was not being directly tested. This module manages memory buffers and is
used for both HTTP2 and HTTP3 cURL implementations, so we opted to write a standalone
harness for it.

A summary of the harness improvements and new harnesses can be found below. In the
short term, we recommend including these modifications as part of the OSS-Fuzz cURL
harness suite. Long term, we recommend working with the community to make the
dependencies more fuzzing-friendly, and improving the HTTP/3 harness further to achieve
higher coverage.

Trail of Bits 10 CURL Security Assessment
PUBLIC


https://github.com/curl/curl-fuzzer/pull/80

Fuzzing harness changes

Harness Description

curl_fuzzer_http Resolved coverage drop due to build misconfiguration
curl_fuzzer_http3 Fuzzing HTTP/3 with ngtcp2, nghttp3 and quictls
curl_fuzzer_bufq Fuzzing BUFQ buffer management

HTTP/1and HTTP/2

Rationale

The current harnesses have support for fuzzing HTTP/1 and HTTP/2 protocols. Both of
these protocols work over TCP connections, unlike HTTP/3, which is built over UDP
datagrams.

The fuzzing coverage at the time of starting this engagement was significantly reduced due
to an issue in the build scripts (TOB-CURLH3-1) that resulted in cURL being built without
SSL support, which was not expected nor supported by the harness.

Harness

On this occasion, we did not change the harness, but we provided a pull request to fix the
build scripts issue. Once it was merged, we monitored OSS-Fuzz coverage levels. The
coverage levels recovered within a few days and nearly reached the levels it used to have
before the issue was introduced.

Future work

As mentioned in TOB-CURLH3-1, we recommend frequently monitoring the harnesses for
errors in build and execution, as well as the resulting coverage levels. These issues should
be addressed promptly, as running a harness that cannot progress meaningfully is unlikely
to provide the project with any benefit, while potentially giving a false sense of security.

HTTP3

Rationale

cURL supports HTTP/3 with multiple QUIC implementations and TLS back ends. The use of
HTTP/3 in the public internet has grown lately, as reported by Cloudflare and W3Techs.
However, the current fuzzing coverage did not show any coverage for the relevant code
implementing HTTP/3. This is also explained by the current harness build scripts not
enabling HTTP/3 support in cURL.

Trail of Bits 11 CURL Security Assessment
PUBLIC


https://github.com/curl/curl-fuzzer/pull/80
https://blog.cloudflare.com/cloudflare-view-http3-usage/
https://w3techs.com/technologies/details/ce-http3

Harness
We asked the cURL team for a recommendation of the most mature build combination for
CURL HTTP/3 support. The team recommended building cURL with QuicTLS, ngtcp2, and
nghttp3:

e QuicTLS s a fork of OpenSSL which adds QUIC-related API.
e ngtcp2 uses QuicTLS to provide QUIC.
e nghttp3 implements HTTP/3 on top of QUIC.

We therefore wrote scripts to download and build these libraries as part of the
curl-fuzzer repository, and to enable HTTP3 support in cURL.

Following that work, we also needed to improve the curl_fuzzer base harness. The
harness was built with TCP-based protocols in mind and uses a SOCK_STREAM socket to
allow a libcurl client to receive random data packets from the fuzzer, which acts as a server.
This works well for connection-based protocols like older HTTP and HTTPS versions, but
HTTP3 is built upon UDP datagrams. We therefore had to allow the harness to use a
SOCK_DGRAM socket, which is meant for datagram-based communication, like the UDP
datagrams used in HTTP/3. We also discovered that several code paths in dependencies
and cURL itself assumed that the socket had the address family AF_INET, which is used for
IP addressing. These code paths therefore did not work correctly when provided a socket
with address family AF_UNIX, like the one used in the fuzzing harness. As a result, we also
needed to patch some of the third-party libraries.

Once these changes were implemented, we executed the harness for several days with
address sanitizer (ASan) enabled, but it did not find any failures. Using the OSS-Fuzz
coverage calculation and reporting feature, we observed coverage in the vquic module
(30% line coverage, 42% function coverage) and in ngtcp2 (15% line coverage, 27%
function coverage), but did not observe any coverage of the nghttp3 library code. We
suspect that, as the HTTP/3 protocol itself is significantly intertwined with TLS, the
encryption makes it hard for a fuzzer to progress to the point where data can be decoded
and parsed meaningfully.

Future work

To achieve end-to-end testing of HTTP/3, we recommend working with the developers of
the TLS, QUIC, and HTTP/3 libraries to identify opportunities to make the code more
fuzzing-friendly. For instance, making encryption optional and stubbing out TLS, and adding
support for a wider variety of datagram sockets, would facilitate fuzz testing and make it
more effective.

Trail of Bits is developing tlspuffin, a custom fuzzer for TLS 1.3 capable of decrypting TLS
messages and fuzzing the plaintext behind the ciphertext. This tool could also facilitate
work on fuzzing HTTP/3 communications.

Trail of Bits 12 CURL Security Assessment
PUBLIC


https://github.com/tlspuffin/tlspuffin

BUFQ Implementation

Rationale

cURL has an internal module named bufq that manages input/output buffers and is used
by several protocol implementations, including WebSockets, HTTP/2, and all three HTTP/3
implementations. While the current fuzzing coverage showed the module had some
indirect coverage, not all functions were covered, and there was no harness directly
exercising the functionality. Additionally, managing memory buffers can be error-prone,
which makes it a good target for fuzzing.

Harness

We implemented a harness that receives a TLV (Type-Length-Value) encoded buffer
containing a set of parameters and operations, decodes it, and follows its instructions to
allocate a bufq, read, write, skip, and otherwise operate on the data in the buffer. Any data
read from the buffer is checked to ensure that it matches the written data. The buffer
length is also checked to ensure that no bytes are lost. We executed this harness for over a
week with ASan enabled, but it did not find any failures.

Future work

Some functions remain uncovered—namely Curl_bufq_write_pass,
Curl_bufq_is_full, and Curl_bufqg_space. We recommend enhancing the harness
suite to exercise these functions as well. The harness could also benefit from becoming
structure-aware to improve efficiency; for the sake of time and code reuse during the
engagement, it was written based on the existing TLV handling code.

Trail of Bits 13 CURL Security Assessment
PUBLIC



Strategic Fuzzing Recommendations

We recommend the following general changes to improve the coverage and efficiency of
cURL'’s fuzzing setup. These recommendations follow from our observations in both the
2022 and 2023 cURL fuzzing assessments:

Add dictionaries for other protocols to libFuzzer and OSS-Fuzz. Adding a
dictionary with common words greatly improves the efficiency of fuzzing in certain
cases, such as text-based protocols. A dictionary can initially be populated by
extracting relevant strings from header files or manual pages, by using AFL++'s
AUTODICTIONARY feature, or by running the binary through the strings
command. If the protocol is well-known, tools such as ChatGPT can also be
prompted to produce a dictionary. The fuzzing chapter of our testing handbook
provides an example of such a prompt.

Ensure that all build configurations (e.g., non-OpenSSL builds, quiche, msh3)
are covered by the fuzz tests.

Add a round-trip fuzzing harness for every encoder/decoder pair. This will
ensure that the encoding and decoding processes work as expected and that data is
not corrupted or otherwise modified.

Implement structure-aware fuzzing. curl-fuzzer currently uses a
type-length-value (TLV) format for inputs in order to encode various types and
components of requests and responses. However, as libFuzzer is not aware of the
TLV structure, many of the mutations it generates are invalid at the TLV-unpacking
stage and have to be discarded by curl-fuzzer. This reduces fuzzing efficiency. In
accordance with Google's recommendation above, we recommend implementing
structure-aware fuzzing by adding a custom mutator that ensures that the fuzzer
always receives a valid input. There is an open pull request from 2019 to add such a
mutator, but its current status is unclear.

Cover argyv fuzzing. Fuzzing the curl binary with different options can be useful to
discover issues in the command-line tool. This can be achieved using the
argv-fuzz-inl.h header from the AFL++ project to build the arguments array
from standard input in cURL. Also, consider adding a dictionary with possible
options and protocols to the fuzzer based on the source code or cURL's manual.

To improve the coverage of HTTP/3 in particular, we suggest the following actions:

Work with the dependency library developers to improve the external
libraries and make them fuzz-friendly. Successful end-to-end fuzzing of HTTP/3
communications will require coordination and collaboration between cURL and
other actors, such as TLS library developers and HTTP/3 library developers. Some

Trail of Bits 14 CURL Security Assessment
PUBLIC


https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md#autodictionary-feature
https://appsec.guide/docs/fuzzing/techniques/dictionary/#generating-a-dictionary
https://github.com/curl/curl-fuzzer/blob/afd786d49a55d928bc6502f4c3abfc1b5030a136/curl_fuzzer_tlv.cc#L200
https://github.com/curl/curl-fuzzer/blob/afd786d49a55d928bc6502f4c3abfc1b5030a136/curl_fuzzer_tlv.cc#L200
https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#type-length-value
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/curl/curl-fuzzer/issues/32
https://github.com/AFLplusplus/AFLplusplus/blob/4.03c/utils/argv_fuzzing/argv-fuzz-inl.h

fuzzing-specific features may need to be developed, like support for non-UDP
sockets or encryption-less connections.

e Work with the dependency library developers to improve their own fuzzing.
While we did not review the state of fuzzing of any third-party library during this
engagement, fuzzing the standalone libraries may prove easier than trying to fuzz
the full vertical integration with cURL. Having these libraries covered by OSS-Fuzz
would indirectly help improve the maturity of the resulting cURL builds.

e Implement a mechanism to be able to fuzz encrypted protocols in plaintext.
Having a way to mock encryption operations in cURL to allow fuzzers to operate in
cleartext will benefit not just HTTP/3, but HTTPS and other encrypted protocols as
well. This could be implemented by either mocking the TLS implementation, or by an
approach similar to tlspuffin (see appendix C: Dolev-Yao TLS Fuzzing Using tlspuffin).

¢ Implement differential fuzzing harnesses to compare HTTP/3
implementations. Building libcurl with different HTTP/3 back ends, testing the
same input on the different builds, and comparing the obtained results can be a
good way to detect differences in behavior and handling of the protocol among
libraries.

e Separate the HTTP/3 harness into its own implementation, to more easily
account for the connectionless nature of UDP.

Trail of Bits 15 CURL Security Assessment
PUBLIC



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic Critical arithmetic operations are present in cURL's Satisfactory
HTTP/3 code in the form of determining data lengths,
buffer positions, etc. In all noted cases, such values are
computed using appropriately sized types and
bounds-checked where necessary.

Auditing CcURL's HTTP/3 code issues a reasonable number of Satisfactory
warnings, errors, and debug messages for critical events
and operations.

Authentication / cURL's HTTP/3 code does not implement authentication Not

Access Controls or access controls. Applicable
Complexity CcURL's HTTP/3 code is well-organized according to Satisfactory
Management discrete functionality implemented, backing libraries

invoked, and so on.

Configuration cURL makes reasonably standard use of the third-party Satisfactory
libraries (e.g., ngtcp2) implementing its lower-level
HTTP/3 functionality.

Cryptography CURL's HTTP/3 code does not handle key material. cURL Not
and Key relies on well audited third-party libraries such as Applicable
Management BoringSSL, GnuTLS, and WolfSSL to perform

cryptographic operations.

Data Handling CcURL's HTTP/3 code mostly consists of passing incoming Satisfactory
data to underlying libraries such as ngtcp2, with
relatively little parsing or processing. Where it is
necessary to interpret or transform this data before
passing it along, such operations are accompanied by

Trail of Bits 16 CURL Security Assessment
PUBLIC



appropriate error checks and safety measures.

Documentation cURL's new HTTP/3 features are somewhat sparsely Moderate
documented compared to older functionality. While the
basics are covered, details are not necessarily covered in

depth.
Maintenance cURL's HTTP/3 code is updated together with the rest of Not
the application, a monolithic binary, and needs no Applicable

separate provisions to update itself.

Memory Safety cURL's HTTP/3 code engages in relatively little direct Strong
and Error memory management, instead relying on prewritten
Handling alloc/init and free functions for common primitives

such as bufq and dynbuf. Array accesses are
appropriately bounded, potentially null pointers checked,

and so on.
Testing and At the time of the audit, cURL had some functionality- Weak
Verification oriented tests for HTTP/3 features, but had no fuzzing or

security-oriented tests.

Trail of Bits 17 CURL Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 OSS-Fuzz coverage silently dropped significantly Configuration Informational

2 curl_fuzzer is ineffective Configuration Informational
Trail of Bits 18 CURL Security Assessment

PUBLIC



Detailed Findings

1. 0SS-Fuzz coverage silently dropped significantly
Severity: Informational Difficulty: Undetermined
Type: Configuration Finding ID: TOB-CURLH3-1

Target: curl_fuzzer repository

Description

Between November 30, 2022 and December 1, 2022, the fuzzing coverage for cURL in
OSS-Fuzz dropped significantly. By the end of November, cURL had over 50% line coverage
and over 67% function coverage; however, in December, cURL fuzz runs reflected a low
6.62% line coverage and 10.18% function coverage.

Reviewing build logs and Git change history, we observed that this occurred after an
OpenSSL version upgrade. The new OpenSSL version started installing the 1ibss1. a static
library on a different directory, 11ib64, instead of the traditional 1ib folder. The cURL fuzz
scripts did not expect nor support this alternate location and therefore built cURL without
SSL support, which broke several expectations in the fuzzing harnesses.

This significant loss of coverage went undetected for over a year, as we observed that the
coverage had not recovered by the time we started this engagement in December 2023.

The Trail of Bits team submitted a pull request to the curl_fuzzer repository to fix the
issue. Once it was merged, we observed the coverage started to increase again starting on
December 15. By December 20, 2023, coverage was up again and near the November 2022
values, with a 48.83% line coverage and 65.73% function coverage of cURL code.

Recommendations

Short term, frequently monitor coverage changes over time, especially after changes are
merged in the curl_fuzzer repository. If a regression is identified, act as needed to
resolve it and restore the fuzzing functionality. Consider modifying the harnesses to
immediately fail if an operation that is supposed to always work, such as setting a static
cURL option, fails.

Long term, implement an automated system to monitor coverage changes in OSS-Fuzz and
alert the maintainers if significant changes are detected. Integrate tests in the
curl_fuzzer Cl to compare corpus coverage before and after changes, in order to detect
regressions earlier on.

Trail of Bits 19 CURL Security Assessment
PUBLIC


https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221130/linux/src/report.html
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221201/linux/src/report.html
https://github.com/curl/curl-fuzzer/pull/80
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20231220/linux/src/report.html

2. curl_fuzzer is ineffective
Severity: Informational Difficulty: Undetermined
Type: Configuration Finding ID: TOB-CURLH3-2

Target: curl_fuzzer/curl_fuzzer.cc

Description

The curl_fuzzer harness displays significantly worse coverage than other similar
harnesses like curl_fuzzer_http. Upon inspecting the harness code and coverage logs,
we observed that the harness consistently fails to set the allowed protocols list, as
highlighted in figure 2.1.

This list is overly broad, and contains protocols that cURL is not built to support, causing
the setopt call to fail every time. The harness cannot proceed beyond this point and
therefore does not achieve any interesting coverage.

int fuzz_set_allowed_protocols(FUZZ_DATA *fuzz)
{

int rc = 0;
const char *allowed_protocols = "";

#ifdef FUZZ_PROTOCOLS_ALL
/* Do not allow telnet currently as it accepts input from stdin. */
allowed_protocols =
"dict, file, ftp, ftps, gopher, gophers, http, https, imap, imaps, "
"ldap, ldaps, mqtt, pop3, pop3s, rtmp, rtmpe, rtmps, rtmpt, rtmpte, rtmpts, "
"rtsp, scp, sftp, smb, smbs, smtp, smtps, tftp";
#endif
/* (...) */
FTRY(curl_easy_setopt(fuzz->easy, CURLOPT_PROTOCOLS_STR, allowed_protocols));

EXIT_LABEL:
return rc;

}
Figure 2.1: The fuzzer harness fails to configure the allowed protocols
(curl-fuzzer/curl_fuzzer.cc#505-577)

Recommendations
Short term, adjust the allowed_protocols list so that it contains only protocols
supported by the cURL build under test.

Long term, review the existing harnesses as time passes and cURL features change to

ensure that they are still exercising code paths as expected.

Trail of Bits 20 CURL Security Assessment
PUBLIC


https://github.com/curl/curl-fuzzer/blob/f67fa1000e8dbc2f9f0189f8669bec9816d5a2f3/curl_fuzzer.cc#L505-L577

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

21 CURL Security Assessment



Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

22 CURL Security Assessment



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration
Cryptography and
Key Management
Data Handling
Documentation
Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Trail of Bits
PUBLIC

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system
The presence of comprehensive and readable codebase documentation
The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

23 CURL Security Assessment



Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.
Satisfactory Minor issues were found, but the system is compliant with best practices.
Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 24 CURL Security Assessment

PUBLIC



C. Dolev-Yao TLS Fuzzing Using t1spuffin

Since 2022, Trail of Bits has been researching stateful fuzzing of cryptographic protocols.
The project started in 2021 as a research project at Inria Nancy (LORIA) in France. This
research culminated in a paper on the Dolev-Yao (DY) fuzzing approach, which will be
published at 2024 |EEE S&P. The corresponding fuzzer is called tlspuffin.

The current TLS fuzzer in projects such as OpenSSL essentially fuzzes only the client/server
hello messages, as they are the only messages in TLS 1.3 that are not encrypted. It is
unlikely that the fuzzer triggers interesting states beyond the first message. This is where
the idea of DY fuzzing comes into play. In the 1980s, the formal methods community
identified and mathematically defined the DY model. It allows us to reason about
cryptographic protocols on a logical and structural level. To fuzz a protocol specifically on a
structural level, a DY fuzzer injects, omits, and modifies encrypted TLS messages. The
fuzzer is capable of decrypting TLS messages and modifying individual fields. Using this
approach, the tlspuffin fuzzer has discovered several CVEs of medium severity in wolfSSL.

The tlspuffin fuzzer is also capable of detecting logical security flaws. This class of bug
usually does not result in a crash or memory corruption that would be detectable by
AddressSanitizer. The current version of tlspuffin is capable of detecting issues like
authentication bypasses, where a server or client can impersonate another one.

The tlspuffin fuzzer is continuously improved, and development is ongoing. For example, a
new feature promises to add classical bit-level fuzzing capabilities to tispuffin. As already
mentioned, tlspuffin works on a more structural level and does not flip single bits in its
current version. However, it makes perfect sense to combine both approaches. This feature
is expected to be released later this year.

Trail of Bits 25 CURL Security Assessment
PUBLIC


https://eprint.iacr.org/2023/057
https://github.com/tlspuffin/tlspuffin
https://blog.trailofbits.com/2023/01/12/wolfssl-vulnerabilities-tlspuffin-fuzzing-ssh/

