
‭cURL HTTP/3 Components‬
‭Security Assessment‬

‭February 22, 2024‬

‭Prepared for:‬

‭Daniel Stenberg,‬‭cURL‬

‭Organized by Open Source Technology Improvement Fund, Inc.‬

‭Prepared by:‬‭Vasco Franco, Emilio López, and Spencer‬‭Michaels‬



‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭228 Park Ave S #80688‬
‭New York, NY 10003‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2023-2024 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be public information;‬‭it is licensed to the cURL‬
‭project under the terms of the project statement of work and has been made public at the‬
‭cURL project’s request.‬‭Material within this report‬‭may not be reproduced or distributed in‬
‭part or in whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications is the‬‭Trail of Bits Publications page‬‭.‬
‭Reports accessed through any source other than that page may have been modified and‬
‭should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/trailofbits/publications


‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Project Summary‬ ‭4‬
‭Executive Summary‬ ‭5‬
‭Project Goals‬ ‭7‬
‭Project Targets‬ ‭8‬
‭Project Coverage‬ ‭9‬
‭Fuzzing Coverage Assessment‬ ‭10‬

‭Assessment Overview‬ ‭10‬
‭HTTP/1 and HTTP/2‬ ‭11‬
‭HTTP3‬ ‭11‬
‭BUFQ Implementation‬ ‭13‬
‭Strategic Fuzzing Recommendations‬ ‭14‬

‭Codebase Maturity Evaluation‬ ‭16‬
‭Summary of Findings‬ ‭18‬
‭Detailed Findings‬ ‭19‬

‭1. OSS-Fuzz coverage silently dropped significantly‬ ‭19‬
‭2. curl_fuzzer is ineffective‬ ‭20‬

‭A. Vulnerability Categories‬ ‭21‬
‭B. Code Maturity Categories‬ ‭23‬
‭C. Dolev-Yao TLS Fuzzing Using tlspuffin‬ ‭25‬

‭Trail of Bits‬ ‭3‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Project Summary‬

‭Contact Information‬
‭The following project manager was associated with this project:‬

‭Jeff Braswell‬‭, Project Manager‬
‭jeff.braswell@trailofbits.com‬

‭The following engineering director was associated with this project:‬

‭Anders Helsing‬‭, Engineering Director, Application‬‭Security‬
‭anders.helsing@trailofbits.com‬

‭The following consultants were associated with this project:‬

‭Vasco Franco‬‭, Consultant‬ ‭Emilio López‬‭, Consultant‬
‭vasco.franco@trailofbits.com‬ ‭emilio.lopez@trailofbits.com‬

‭Spencer Michaels‬‭, Consultant‬
‭spencer.michaels@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭December 8, 2023‬ ‭Pre-project kickoff call‬

‭December 21, 2023‬ ‭Status update meeting #1‬

‭January 4, 2024‬ ‭Delivery of report draft; report readout meeting‬

‭February 22, 2024‬ ‭Delivery of comprehensive report‬

‭Trail of Bits‬ ‭4‬ ‭cURL Security Assessment‬
‭PUBLIC‬

mailto:jeff.braswell@trailofbits.com
mailto:anders.helsing@trailofbits.com
mailto:vasco.franco@trailofbits.com
mailto:emilio.lopez@trailofbits.com
mailto:spencer.michaels@trailofbits.com


‭Executive Summary‬

‭Engagement Overview‬
‭The Open Source Technology Improvement Fund engaged Trail of Bits to review the‬
‭security of cURL’s newly added HTTP/3 components.‬

‭A team of three consultants conducted the review from December 8 to 26, 2023, for a total‬
‭of six engineer-weeks of effort. Our testing efforts focused on components recently added‬
‭to cURL to support HTTP/3, as well as cURL’s fuzz tests implemented for said components.‬
‭With full access to source code and documentation, we performed static and dynamic‬
‭testing of the codebase, using automated and manual processes. In addition, we both‬
‭modified existing fuzz tests and wrote additional tests to increase fuzzing coverage. The‬
‭scope of this audit included only code directly related to HTTP/3 functionality within cURL‬
‭itself—notably, excluding the internals of third-party libraries such as‬‭ngtcp2‬‭and‬‭nghttp3‬
‭that cURL calls out to for lower-level HTTP/3 operations.‬

‭Observations and Impact‬

‭cURL’s HTTP/3 components are implemented fairly robustly, making heavy use of‬
‭preexisting primitives common to much of the rest of the cURL codebase (e.g.,‬‭bufq‬‭and‬
‭dynbuf‬‭). In effect, the components within the scope‬‭of this audit largely comprise an‬
‭intermediate layer that lightly handles incoming data in order to pass it on to third-party‬
‭libraries for lower-level processing, maintaining some associated state meanwhile. We did‬
‭not identify any memory safety, data handling, or state maintenance issues in cURL’s‬
‭HTTP3 components; however, we did identify regressions and gaps in cURL’s fuzz tests that‬
‭have caused recent versions of cURL to suffer considerably in terms of fuzzing coverage.‬

‭It should be noted that the scope of the code reviewed within this audit is relatively narrow.‬
‭In particular, while we audited cURL’s‬‭use‬‭of the‬‭third-party libraries‬‭ngtcp2‬‭,‬‭nghttp3‬‭,‬
‭quiche‬‭, and‬‭msh3‬‭to implement HTTP/3 functionality,‬‭we did not investigate the internals‬
‭of those libraries—which is where the majority of the low-level parsing and data‬
‭transformation necessitated by the HTTP/3 protocol occurs. The fuzz tests we implemented‬
‭did involve those library internals, insofar as they invoked code paths that called them‬
‭internally, but they were not targeted directly. We recommend conducting additional audits‬
‭targeted at the internals of those libraries, especially‬‭ngtcp2‬‭and‬‭nghttp3‬‭, which are‬
‭currently the cURL developers’ main focus for HTTP/3 support.‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that the cURL development team take the following steps‬
‭going forward:‬

‭Trail of Bits‬ ‭5‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭●‬ ‭Remediate the findings disclosed in this report.‬‭These findings should be‬
‭addressed as part of a direct remediation or as part of any refactor that may occur‬
‭when addressing other recommendations.‬

‭●‬ ‭Implement measures to detect regressions in fuzzing coverage.‬‭Significant‬
‭reductions in coverage should be promptly identified and addressed. This is‬
‭particularly relevant when we consider that OSS-Fuzz is fuzzing cURL continuously;‬
‭any changes that make harnesses ineffective will negate the benefit of continuous‬
‭fuzzing.‬

‭●‬ ‭Conduct additional security audits of the‬‭ngtcp2‬‭,‬‭nghttp3‬‭,‬‭quiche‬‭, and‬‭msh3‬
‭HTTP/3 libraries employed by cURL, and implement fuzz tests that cover them.‬
‭Much of the lower-level data processing involved in parsing the HTTP/3 protocol‬
‭occurs in these libraries, rather than in cURL’s codebase directly.‬

‭●‬ ‭Consider alternatives to decouple or stub out encryption from the QUIC‬
‭implementation.‬‭A very limited amount of code paths‬‭can be explored currently in‬
‭the HTTP/3 implementation, as a traditional fuzzer is not able to produce valid‬
‭encrypted traffic. Including a way to be able to fuzz HTTP/3 and HTTPS in plaintext‬
‭would enhance the fuzzability of the protocols. This will require coordinated work‬
‭with the third-party libraries implementing HTTP/3.‬

‭Finding Severities and Categories‬

‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭0‬

‭Medium‬ ‭0‬

‭Low‬ ‭0‬

‭Informational‬ ‭2‬

‭Undetermined‬ ‭0‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Configuration‬ ‭2‬

‭Trail of Bits‬ ‭6‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Project Goals‬

‭The engagement was scoped to provide a security assessment of cURL’s new HTTP/3‬
‭components. Specifically, we sought to answer the following non-exhaustive list of‬
‭questions:‬

‭●‬ ‭Are there any logic errors within the HTTP/3 components that could result in‬
‭reaching an inconsistent state, given ill-formatted inputs?‬

‭●‬ ‭Are there any aspects of the HTTP/3 specification with which cURL’s implementation‬
‭does not comply, especially areas where the HTTP/2 and HTTP/3 specifications differ‬
‭substantially?‬

‭●‬ ‭Are there any circumstances in which cURL could mismanage its underlying UDP‬
‭components?‬

‭●‬ ‭Does cURL use its underlying HTTP/3 libraries (e.g.,‬‭ngtcp2)‬‭in unsafe ways?‬

‭●‬ ‭Does cURL have sufficient fuzz test coverage on its core components?‬

‭●‬ ‭What code paths within the HTTP/3 components are most likely to benefit from‬
‭additional fuzz tests?‬

‭Trail of Bits‬ ‭7‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Project Targets‬

‭The engagement involved a review and testing of the targets listed below.‬

‭cURL‬
‭Repository‬ ‭https://github.com/curl/curl‬

‭Version‬ ‭ede2e812c22fd42527acffdbafd98ee90eaa0dbe‬

‭Type‬ ‭Library and CLI binary‬

‭Platform‬ ‭Native‬

‭cURL fuzzer for OSS-Fuzz‬
‭Repository‬ ‭https://github.com/curl/curl-fuzzer‬

‭Version‬ ‭f67fa1000e8dbc2f9f0189f8669bec9816d5a2f3‬

‭Type‬ ‭Fuzzing harnesses and scripts‬

‭Platform‬ ‭x86 and x86_64‬

‭Trail of Bits‬ ‭8‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/curl/curl-fuzzer


‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭Manual code review and static analysis of cURL’s HTTP/3-related components, with a‬
‭particular focus on code paths involving the‬‭ngtcp2‬‭back end.‬

‭●‬ ‭Analysis of existing fuzz test coverage for HTTP/3-related functionality, and‬
‭implementation of additional fuzz tests.‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭Given our engineers’ relative unfamiliarity with the details of the HTTP/3‬
‭specification, compared to the cURL developers themselves, our ability to identify‬
‭protocol-level issues such as spec noncompliance was limited.‬

‭Trail of Bits‬ ‭9‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Fuzzing Coverage Assessment‬

‭As part of this engagement, Trail of Bits reviewed the cURL project’s fuzz tests and their‬
‭coverage, with the aim of improving their depth and coverage of the HTTP3‬
‭implementation. The libcurl library is continuously fuzzed by OSS-Fuzz, an initiative for‬
‭fuzzing open-source software, using scripts and harnesses from the‬‭curl-fuzzer‬
‭repository.‬

‭Assessment Overview‬
‭As a first step, we reviewed the coverage currently achieved by the fuzzing harnesses in the‬
‭repository, based on the seed cases. We also reviewed coverage reports from OSS-Fuzz.‬
‭These reports showed a significant decrease in coverage compared to last year (see finding‬
‭TOB-CURLH3-1‬‭for further context). We also observed‬‭nil coverage of the code‬
‭implementing HTTP/3. This was expected, as OSS-Fuzz does not currently build cURL with‬
‭HTTP/3 support.‬

‭During the first week of the engagement, we investigated the root cause of the drop in‬
‭coverage and provided a‬‭pull request on the‬‭curl-fuzzer‬‭repository‬‭to resolve the issue.‬
‭Once it was merged and a few days passed, we saw the coverage rise in general to levels‬
‭similar to those observed in November 2022. Once we had a good baseline to reference,‬
‭we reviewed the coverage in more detail.‬

‭To start covering HTTP/3 code paths, we then made changes to the‬‭curl-fuzzer‬
‭repository to build cURL with HTTP/3 support. This necessitated adaptations in the build‬
‭scripts to build and install a compatible TLS library as well as one or more libraries‬
‭implementing the QUIC and HTTP/3 protocols. After discussions with the cURL‬
‭development team, we selected‬‭QuicTLS‬‭,‬‭ngtcp2‬‭, and‬‭nghttp3‬‭as the most suitable build‬
‭combination. We wrote scripts to download and build these libraries as part of the‬
‭curl-fuzzer‬‭repository, and to enable HTTP3 support‬‭in cURL. Following that work, we‬
‭also needed to improve the‬‭curl_fuzzer‬‭harness, so‬‭that it performed adequately with a‬
‭datagram-based protocol like HTTP/3.‬

‭We also identified a common code path from cURL, BUFQ, which had some indirect‬
‭coverage but was not being directly tested. This module manages memory buffers and is‬
‭used for both HTTP2 and HTTP3 cURL implementations, so we opted to write a standalone‬
‭harness for it.‬

‭A summary of the harness improvements and new harnesses can be found below. In the‬
‭short term, we recommend including these modifications as part of the OSS-Fuzz cURL‬
‭harness suite. Long term, we recommend working with the community to make the‬
‭dependencies more fuzzing-friendly, and improving the HTTP/3 harness further to achieve‬
‭higher coverage.‬

‭Trail of Bits‬ ‭10‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/curl/curl-fuzzer/pull/80


‭Fuzzing harness changes‬

‭Harness‬ ‭Description‬

‭curl_fuzzer_http‬ ‭Resolved coverage drop due to build misconfiguration‬

‭curl_fuzzer_http3‬ ‭Fuzzing HTTP/3 with ngtcp2, nghttp3 and quictls‬

‭curl_fuzzer_bufq‬ ‭Fuzzing BUFQ buffer management‬

‭HTTP/1 and HTTP/2‬
‭Rationale‬
‭The current harnesses have support for fuzzing HTTP/1 and HTTP/2 protocols. Both of‬
‭these protocols work over TCP connections, unlike HTTP/3, which is built over UDP‬
‭datagrams.‬

‭The fuzzing coverage at the time of starting this engagement was significantly reduced due‬
‭to an issue in the build scripts (‬‭TOB-CURLH3-1‬‭) that‬‭resulted in cURL being built without‬
‭SSL support, which was not expected nor supported by the harness.‬

‭Harness‬
‭On this occasion, we did not change the harness, but we provided a‬‭pull request‬‭to fix the‬
‭build scripts issue. Once it was merged, we monitored OSS-Fuzz coverage levels. The‬
‭coverage levels recovered within a few days and nearly reached the levels it used to have‬
‭before the issue was introduced.‬

‭Future work‬
‭As mentioned in‬‭TOB-CURLH3-1‬‭, we recommend frequently‬‭monitoring the harnesses for‬
‭errors in build and execution, as well as the resulting coverage levels. These issues should‬
‭be addressed promptly, as running a harness that cannot progress meaningfully is unlikely‬
‭to provide the project with any benefit, while potentially giving a false sense of security.‬

‭HTTP3‬
‭Rationale‬
‭cURL supports HTTP/3 with multiple QUIC implementations and TLS back ends. The use of‬
‭HTTP/3 in the public internet has grown lately, as reported by‬‭Cloudflare‬‭and‬‭W3Techs‬‭.‬
‭However, the current fuzzing coverage did not show any coverage for the relevant code‬
‭implementing HTTP/3. This is also explained by the current harness build scripts not‬
‭enabling HTTP/3 support in cURL.‬

‭Trail of Bits‬ ‭11‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/curl/curl-fuzzer/pull/80
https://blog.cloudflare.com/cloudflare-view-http3-usage/
https://w3techs.com/technologies/details/ce-http3


‭Harness‬
‭We asked the cURL team for a recommendation of the most mature build combination for‬
‭cURL HTTP/3 support. The team recommended building cURL with‬‭QuicTLS‬‭,‬‭ngtcp2‬‭, and‬
‭nghttp3‬‭:‬

‭●‬ ‭QuicTLS‬‭is a fork of OpenSSL which adds QUIC-related‬‭API.‬
‭●‬ ‭ngtcp2‬‭uses QuicTLS to provide QUIC.‬
‭●‬ ‭nghttp3‬‭implements HTTP/3 on top of QUIC.‬

‭We therefore wrote scripts to download and build these libraries as part of the‬
‭curl-fuzzer‬‭repository, and to enable HTTP3 support‬‭in cURL.‬

‭Following that work, we also needed to improve the‬‭curl_fuzzer‬‭base harness. The‬
‭harness was built with TCP-based protocols in mind and uses a‬‭SOCK_STREAM‬‭socket to‬
‭allow a libcurl client to receive random data packets from the fuzzer, which acts as a server.‬
‭This works well for connection-based protocols like older HTTP and HTTPS versions, but‬
‭HTTP3 is built upon UDP datagrams. We therefore had to allow the harness to use a‬
‭SOCK_DGRAM‬‭socket, which is meant for datagram-based‬‭communication, like the UDP‬
‭datagrams used in HTTP/3. We also discovered that several code paths in dependencies‬
‭and cURL itself assumed that the socket had the address family‬‭AF_INET‬‭, which is used for‬
‭IP addressing. These code paths therefore did not work correctly when provided a socket‬
‭with address family‬‭AF_UNIX‬‭, like the one used in the fuzzing harness. As a result, we also‬
‭needed to patch some of the third-party libraries.‬

‭Once these changes were implemented, we executed the harness for several days with‬
‭address sanitizer (ASan) enabled, but it did not find any failures. Using the OSS-Fuzz‬
‭coverage calculation and reporting feature, we observed coverage in the‬‭vquic‬‭module‬
‭(30% line coverage, 42% function coverage) and in‬‭ngtcp2‬‭(15% line coverage, 27%‬
‭function coverage), but did not observe any coverage of the‬‭nghttp3‬‭library code. We‬
‭suspect that, as the HTTP/3 protocol itself is significantly intertwined with TLS, the‬
‭encryption makes it hard for a fuzzer to progress to the point where data can be decoded‬
‭and parsed meaningfully.‬

‭Future work‬
‭To achieve end-to-end testing of HTTP/3, we recommend working with the developers of‬
‭the TLS, QUIC, and HTTP/3 libraries to identify opportunities to make the code more‬
‭fuzzing-friendly. For instance, making encryption optional and stubbing out TLS, and adding‬
‭support for a wider variety of datagram sockets, would facilitate fuzz testing and make it‬
‭more effective.‬

‭Trail of Bits is developing‬‭tlspuffin‬‭, a custom fuzzer‬‭for TLS 1.3 capable of decrypting TLS‬
‭messages and fuzzing the plaintext behind the ciphertext. This tool could also facilitate‬
‭work on fuzzing HTTP/3 communications.‬

‭Trail of Bits‬ ‭12‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/tlspuffin/tlspuffin


‭BUFQ Implementation‬
‭Rationale‬
‭cURL has an internal module named‬‭bufq‬‭that manages‬‭input/output buffers and is used‬
‭by several protocol implementations, including WebSockets, HTTP/2, and all three HTTP/3‬
‭implementations. While the current fuzzing coverage showed the module had some‬
‭indirect coverage, not all functions were covered, and there was no harness directly‬
‭exercising the functionality. Additionally, managing memory buffers can be error-prone,‬
‭which makes it a good target for fuzzing.‬

‭Harness‬
‭We implemented a harness that receives a TLV (Type-Length-Value) encoded buffer‬
‭containing a set of parameters and operations, decodes it, and follows its instructions to‬
‭allocate a‬‭bufq‬‭, read, write, skip, and otherwise‬‭operate on the data in the buffer. Any data‬
‭read from the buffer is checked to ensure that it matches the written data. The buffer‬
‭length is also checked to ensure that no bytes are lost. We executed this harness for over a‬
‭week with ASan enabled, but it did not find any failures.‬

‭Future work‬
‭Some functions remain uncovered—namely‬‭Curl_bufq_write_pass‬‭,‬
‭Curl_bufq_is_full‬‭, and‬‭Curl_bufq_space‬‭. We recommend‬‭enhancing the harness‬
‭suite to exercise these functions as well. The harness could also benefit from becoming‬
‭structure-aware to improve efficiency; for the sake of time and code reuse during the‬
‭engagement, it was written based on the existing TLV handling code.‬

‭Trail of Bits‬ ‭13‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Strategic Fuzzing Recommendations‬
‭We recommend the following general changes to improve the coverage and efficiency of‬
‭cURL’s fuzzing setup. These recommendations follow from our observations in both the‬
‭2022 and 2023 cURL fuzzing assessments:‬

‭●‬ ‭Add dictionaries for other protocols to libFuzzer and OSS-Fuzz.‬‭Adding a‬
‭dictionary with common words greatly improves the efficiency of fuzzing in certain‬
‭cases, such as text-based protocols. A dictionary can initially be populated by‬
‭extracting relevant strings from header files or manual pages, by using AFL++’s‬
‭AUTODICTIONARY‬‭feature, or by running the binary through‬‭the‬‭strings‬
‭command. If the protocol is well-known, tools such as ChatGPT can also be‬
‭prompted to produce a dictionary. The fuzzing chapter of our testing handbook‬
‭provides an‬‭example‬‭of such a prompt.‬

‭●‬ ‭Ensure that all build configurations (e.g., non-OpenSSL builds, quiche, msh3)‬
‭are covered by the fuzz tests.‬

‭●‬ ‭Add a round-trip fuzzing harness for every encoder/decoder pair‬‭.‬‭This will‬
‭ensure that the encoding and decoding processes work as expected and that data is‬
‭not corrupted or otherwise modified.‬

‭●‬ ‭Implement structure-aware fuzzing.‬‭curl-fuzzer‬‭currently uses a‬
‭type-length-value (TLV) format for inputs in order to encode various types and‬
‭components of requests and responses. However, as libFuzzer is not aware of the‬
‭TLV structure, many of the mutations it generates are‬‭invalid at the TLV-unpacking‬
‭stage‬‭and have to be discarded by‬‭curl-fuzzer‬‭. This‬‭reduces fuzzing efficiency‬‭. In‬
‭accordance with Google’s recommendation above, we recommend implementing‬
‭structure-aware fuzzing‬‭by adding a custom mutator‬‭that ensures that the fuzzer‬
‭always receives a valid input. There is an‬‭open pull‬‭request‬‭from 2019 to add such a‬
‭mutator, but its current status is unclear.‬

‭●‬ ‭Cover‬‭argv‬‭fuzzing.‬‭Fuzzing the curl binary with different options can be useful to‬
‭discover issues in the command-line tool. This can be achieved using the‬
‭argv-fuzz-inl.h‬‭header from the AFL++ project to build‬‭the arguments array‬
‭from standard input in cURL. Also, consider adding a dictionary with possible‬
‭options and protocols to the fuzzer based on the source code or cURL’s manual.‬

‭To improve the coverage of HTTP/3 in particular, we suggest the following actions:‬

‭●‬ ‭Work with the dependency library developers to improve the external‬
‭libraries and make them fuzz-friendly.‬‭Successful‬‭end-to-end fuzzing of HTTP/3‬
‭communications will require coordination and collaboration between cURL and‬
‭other actors, such as TLS library developers and HTTP/3 library developers. Some‬

‭Trail of Bits‬ ‭14‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.lto.md#autodictionary-feature
https://appsec.guide/docs/fuzzing/techniques/dictionary/#generating-a-dictionary
https://github.com/curl/curl-fuzzer/blob/afd786d49a55d928bc6502f4c3abfc1b5030a136/curl_fuzzer_tlv.cc#L200
https://github.com/curl/curl-fuzzer/blob/afd786d49a55d928bc6502f4c3abfc1b5030a136/curl_fuzzer_tlv.cc#L200
https://github.com/google/fuzzing/blob/master/docs/split-inputs.md#type-length-value
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/curl/curl-fuzzer/issues/32
https://github.com/AFLplusplus/AFLplusplus/blob/4.03c/utils/argv_fuzzing/argv-fuzz-inl.h


‭fuzzing-specific features may need to be developed, like support for non-UDP‬
‭sockets or encryption-less connections.‬

‭●‬ ‭Work with the dependency library developers to improve their own fuzzing.‬
‭While we did not review the state of fuzzing of any third-party library during this‬
‭engagement, fuzzing the standalone libraries may prove easier than trying to fuzz‬
‭the full vertical integration with cURL. Having these libraries covered by OSS-Fuzz‬
‭would indirectly help improve the maturity of the resulting cURL builds.‬

‭●‬ ‭Implement a mechanism to be able to fuzz encrypted protocols in plaintext.‬
‭Having a way to mock encryption operations in cURL to allow fuzzers to operate in‬
‭cleartext will benefit not just HTTP/3, but HTTPS and other encrypted protocols as‬
‭well. This could be implemented by either mocking the TLS implementation, or by an‬
‭approach similar to tlspuffin (see‬‭appendix C: Dolev-Yao‬‭TLS Fuzzing Using tlspuffin‬‭).‬

‭●‬ ‭Implement differential fuzzing harnesses to compare HTTP/3‬
‭implementations.‬‭Building libcurl with different HTTP/3‬‭back ends, testing the‬
‭same input on the different builds, and comparing the obtained results can be a‬
‭good way to detect differences in behavior and handling of the protocol among‬
‭libraries.‬

‭●‬ ‭Separate the HTTP/3 harness into its own implementation, to more easily‬
‭account for the connectionless nature of UDP.‬

‭Trail of Bits‬ ‭15‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭Critical arithmetic operations are present in cURL’s‬
‭HTTP/3 code in the form of determining data lengths,‬
‭buffer positions, etc. In all noted cases, such values are‬
‭computed using appropriately sized types and‬
‭bounds-checked where necessary.‬

‭Satisfactory‬

‭Auditing‬ ‭cURL’s HTTP/3 code issues a reasonable number of‬
‭warnings, errors, and debug messages for critical events‬
‭and operations.‬

‭Satisfactory‬

‭Authentication /‬
‭Access Controls‬

‭cURL’s HTTP/3 code does not implement authentication‬
‭or access controls.‬

‭Not‬
‭Applicable‬

‭Complexity‬
‭Management‬

‭cURL’s HTTP/3 code is well-organized according to‬
‭discrete functionality implemented, backing libraries‬
‭invoked, and so on.‬

‭Satisfactory‬

‭Configuration‬ ‭cURL makes reasonably standard use of the third-party‬
‭libraries (e.g.,‬‭ngtcp2‬‭) implementing its lower-level‬
‭HTTP/3 functionality.‬

‭Satisfactory‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭cURL’s HTTP/3 code does not handle key material. cURL‬
‭relies on well audited third-party libraries such as‬
‭BoringSSL, GnuTLS, and WolfSSL to perform‬
‭cryptographic operations.‬

‭Not‬
‭Applicable‬

‭Data Handling‬ ‭cURL’s HTTP/3 code mostly consists of passing incoming‬
‭data to underlying libraries such as‬‭ngtcp2‬‭, with‬
‭relatively little parsing or processing. Where it is‬
‭necessary to interpret or transform this data before‬
‭passing it along, such operations are accompanied by‬

‭Satisfactory‬

‭Trail of Bits‬ ‭16‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭appropriate error checks and safety measures.‬

‭Documentation‬ ‭cURL’s new HTTP/3 features are somewhat sparsely‬
‭documented compared to older functionality. While the‬
‭basics are covered, details are not necessarily covered in‬
‭depth.‬

‭Moderate‬

‭Maintenance‬ ‭cURL’s HTTP/3 code is updated together with the rest of‬
‭the application, a monolithic binary, and needs no‬
‭separate provisions to update itself.‬

‭Not‬
‭Applicable‬

‭Memory Safety‬
‭and Error‬
‭Handling‬

‭cURL’s HTTP/3 code engages in relatively little direct‬
‭memory management, instead relying on prewritten‬
‭alloc‬‭/‬‭init‬‭and‬‭free‬‭functions for common primitives‬
‭such as‬‭bufq‬‭and‬‭dynbuf‬‭. Array accesses are‬
‭appropriately bounded, potentially null pointers checked,‬
‭and so on.‬

‭Strong‬

‭Testing and‬
‭Verification‬

‭At the time of the audit, cURL had some functionality-‬
‭oriented tests for HTTP/3 features, but had no fuzzing or‬
‭security-oriented tests.‬

‭Weak‬

‭Trail of Bits‬ ‭17‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭OSS-Fuzz coverage silently dropped significantly‬ ‭Configuration‬ ‭Informational‬

‭2‬ ‭curl_fuzzer is ineffective‬ ‭Configuration‬ ‭Informational‬

‭Trail of Bits‬ ‭18‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Detailed Findings‬

‭1. OSS-Fuzz coverage silently dropped significantly‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Undetermined‬

‭Type: Configuration‬ ‭Finding ID: TOB-CURLH3-1‬

‭Target: curl_fuzzer repository‬

‭Description‬
‭Between‬‭November 30, 2022‬‭and‬‭December 1, 2022‬‭, the‬‭fuzzing coverage for cURL in‬
‭OSS-Fuzz dropped significantly. By the end of November, cURL had over 50% line coverage‬
‭and over 67% function coverage; however, in December, cURL fuzz runs reflected a low‬
‭6.62% line coverage and 10.18% function coverage.‬

‭Reviewing build logs and Git change history, we observed that this occurred after an‬
‭OpenSSL version upgrade. The new OpenSSL version started installing the‬‭libssl.a‬‭static‬
‭library on a different directory,‬‭lib64‬‭, instead of‬‭the traditional‬‭lib‬‭folder. The cURL fuzz‬
‭scripts did not expect nor support this alternate location and therefore built cURL without‬
‭SSL support, which broke several expectations in the fuzzing harnesses.‬

‭This significant loss of coverage went undetected for over a year, as we observed that the‬
‭coverage had not recovered by the time we started this engagement in December 2023.‬

‭The Trail of Bits team submitted a‬‭pull request to‬‭the‬‭curl_fuzzer‬‭repository‬‭to fix the‬
‭issue. Once it was merged, we observed the coverage started to increase again starting on‬
‭December 15. By‬‭December 20, 2023‬‭, coverage was up again and near the November 2022‬
‭values, with a 48.83% line coverage and 65.73% function coverage of cURL code.‬

‭Recommendations‬
‭Short term, frequently monitor coverage changes over time, especially after changes are‬
‭merged in the‬‭curl_fuzzer‬‭repository. If a regression‬‭is identified, act as needed to‬
‭resolve it and restore the fuzzing functionality. Consider modifying the harnesses to‬
‭immediately fail if an operation that is supposed to always work, such as setting a static‬
‭cURL option, fails.‬

‭Long term, implement an automated system to monitor coverage changes in OSS-Fuzz and‬
‭alert the maintainers if significant changes are detected. Integrate tests in the‬
‭curl_fuzzer‬‭CI to compare corpus coverage before and‬‭after changes, in order to detect‬
‭regressions earlier on.‬

‭Trail of Bits‬ ‭19‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221130/linux/src/report.html
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20221201/linux/src/report.html
https://github.com/curl/curl-fuzzer/pull/80
https://storage.googleapis.com/oss-fuzz-coverage/curl/reports/20231220/linux/src/report.html


‭2. curl_fuzzer is ineffective‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Undetermined‬

‭Type: Configuration‬ ‭Finding ID: TOB-CURLH3-2‬

‭Target:‬‭curl_fuzzer/curl_fuzzer.cc‬

‭Description‬
‭The‬‭curl_fuzzer‬‭harness displays significantly worse‬‭coverage than other similar‬
‭harnesses like‬‭curl_fuzzer_http‬‭. Upon inspecting the‬‭harness code and coverage logs,‬
‭we observed that the harness consistently fails to set the allowed protocols list, as‬
‭highlighted in figure 2.1.‬

‭This list is overly broad, and contains protocols that cURL is not built to support, causing‬
‭the‬‭setopt‬‭call to fail every time. The harness cannot‬‭proceed beyond this point and‬
‭therefore does not achieve any interesting coverage.‬

‭int‬‭fuzz_set_allowed_protocols‬‭(FUZZ_DATA‬‭*fuzz)‬
‭{‬
‭int‬‭rc‬‭=‬‭0‬‭;‬
‭const‬‭char‬‭*allowed_protocols‬‭=‬‭""‬‭;‬

‭#ifdef FUZZ_PROTOCOLS_ALL‬
‭/* Do not allow telnet currently as it accepts input‬‭from stdin. */‬
‭allowed_protocols‬‭=‬
‭"dict,file,ftp,ftps,gopher,gophers,http,https,imap,imaps,"‬
‭"ldap,ldaps,mqtt,pop3,pop3s,rtmp,rtmpe,rtmps,rtmpt,rtmpte,rtmpts,"‬
‭"rtsp,scp,sftp,smb,smbs,smtp,smtps,tftp"‬‭;‬

‭#endif‬
‭/* (...) */‬
‭FTRY(curl_easy_setopt(fuzz->easy,‬‭CURLOPT_PROTOCOLS_STR,‬‭allowed_protocols));‬

‭EXIT_LABEL‬‭:‬
‭return‬‭rc;‬

‭}‬

‭Figure 2.1: The fuzzer harness fails to configure the allowed protocols‬
‭(‬‭curl-fuzzer/curl_fuzzer.cc#505–577‬‭)‬

‭Recommendations‬
‭Short term, adjust the‬‭allowed_protocols‬‭list so that‬‭it contains only protocols‬
‭supported by the cURL build under test.‬

‭Long term, review the existing harnesses as time passes and cURL features change to‬
‭ensure that they are still exercising code paths as expected.‬

‭Trail of Bits‬ ‭20‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://github.com/curl/curl-fuzzer/blob/f67fa1000e8dbc2f9f0189f8669bec9816d5a2f3/curl_fuzzer.cc#L505-L577


‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭21‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭22‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Maintenance‬ ‭The timely maintenance of system components to mitigate risk‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Trail of Bits‬ ‭23‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭24‬ ‭cURL Security Assessment‬
‭PUBLIC‬



‭C. Dolev-Yao TLS Fuzzing Using‬‭tlspuffin‬

‭Since 2022, Trail of Bits has been researching stateful fuzzing of cryptographic protocols.‬
‭The project started in 2021 as a research project at Inria Nancy (LORIA) in France. This‬
‭research culminated in a‬‭paper‬‭on the Dolev-Yao (DY)‬‭fuzzing approach, which will be‬
‭published at 2024 IEEE S&P. The corresponding fuzzer is called‬‭tlspuffin‬‭.‬

‭The current TLS fuzzer in projects such as OpenSSL essentially fuzzes only the client/server‬
‭hello messages, as they are the only messages in TLS 1.3 that are not encrypted. It is‬
‭unlikely that the fuzzer triggers interesting states beyond the first message. This is where‬
‭the idea of DY fuzzing comes into play. In the 1980s, the formal methods community‬
‭identified and mathematically defined the DY model. It allows us to reason about‬
‭cryptographic protocols on a logical and structural level. To fuzz a protocol specifically on a‬
‭structural level, a DY fuzzer injects, omits, and modifies encrypted TLS messages. The‬
‭fuzzer is capable of decrypting TLS messages and modifying individual fields. Using this‬
‭approach, the tlspuffin fuzzer has discovered‬‭several‬‭CVEs of medium severity in wolfSSL‬‭.‬

‭The tlspuffin fuzzer is also capable of detecting logical security flaws. This class of bug‬
‭usually does not result in a crash or memory corruption that would be detectable by‬
‭AddressSanitizer. The current version of tlspuffin is capable of detecting issues like‬
‭authentication bypasses, where a server or client can impersonate another one.‬

‭The tlspuffin fuzzer is continuously improved, and development is ongoing. For example, a‬
‭new feature promises to add classical bit-level fuzzing capabilities to tlspuffin. As already‬
‭mentioned, tlspuffin works on a more structural level and does not flip single bits in its‬
‭current version. However, it makes perfect sense to combine both approaches. This feature‬
‭is expected to be released later this year.‬

‭Trail of Bits‬ ‭25‬ ‭cURL Security Assessment‬
‭PUBLIC‬

https://eprint.iacr.org/2023/057
https://github.com/tlspuffin/tlspuffin
https://blog.trailofbits.com/2023/01/12/wolfssl-vulnerabilities-tlspuffin-fuzzing-ssh/

